Learning Incoherent Subspaces For Classification Via Supervised Iterative Projections And Rotations
Daniele Barchiesi, Mark D. Plumbley

Abstract:
In this paper we present the supervised iterative projections and rotations (S-IPR) algorithm, a method to optimise a set of discriminative subspaces for supervised classification. We show how the proposed technique is based on our previous unsupervised iterative projections and rotations (IPR) algo- rithm for incoherent dictionary learning, and how projecting the features onto the learned sub-spaces can be employed as a feature transform algorithm in the context of classification. Numerical experiments on the FISHERIRIS and on the USPS datasets, and a comparison with the PCA and LDA methods for feature transform demonstrates the value of the proposed technique and its potential as a tool for machine learning.